Math 221: LINEAR ALGEBRA

Chapter 2. Matrix Algebra
 §2-5. Elementary Matrices

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $02 / 08 / 2021$)

Elementary Matrices

Inverses of elementary matrices

Smith Normal Form

Elementary Matrices

Inverses of elementary matrices

Smith Normal Form

Elementary Matrices

Definition

An elementary matrix is a matrix obtained from an identity matrix by performing a single elementary row operation.

Remark (Three Types of Elementary Row Operations)

(\sim bases for genomic sequences)

- Type I: Interchange two rows.
- Type II: Multiply a row by a nonzero number.
- Type III: Add a (nonzero) multiple of one row to a different row.

Example

$$
\begin{array}{ccc}
\text { Switch the 2nd row } & \text { Multiply }-2 \text { to the } & \text { Add }-3 \text { multiple of } \\
\text { and the 4th row } & \text { 3rd row } & \text { 1st row to the 3rd row }
\end{array}
$$

$$
\mathrm{E}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \mathrm{F}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \mathrm{G}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

are examples of elementary matrices of types I, II and III, respectively.

Example (continued)

Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4
\end{array}\right]
$$

We are interested in the effect that (left) multiplication of A by E, F and G has on the matrix A. Computing EA, FA, and GA ...

Example (continued)

$$
\begin{aligned}
& \mathrm{EA}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 4 \\
3 & 3 \\
2 & 2
\end{array}\right] \quad \begin{array}{c}
\text { Switch the 2nd row } \\
\text { and the 4th row }
\end{array} \\
& \mathrm{FA}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
2 & 2 \\
-6 & -6 \\
4 & 4
\end{array}\right] \begin{array}{c}
\text { Multiply }-2 \text { to the } \\
\text { 3rd row }
\end{array} \\
& \mathrm{GA}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 2 \\
0 & 0 \\
4 & 4
\end{array}\right] \quad \begin{array}{c}
\text { Add }-3 \text { multiple of } \\
\text { 1st row to the 3rd row }
\end{array}
\end{aligned}
$$

Remark

The elementary matrices are the programmed receipts for your cooking!

Theorem (Multiplication by an Elementary Matrix)
Let A be an $\mathrm{m} \times \mathrm{n}$ matrix.
If B is obtained from A by performing one single elementary row operation,
then $\mathrm{B}=\mathrm{EA}$
where E is the elementary matrix obtained from I_{m} by performing the same elementary operation on I_{m} as was performed on A.

$$
\begin{aligned}
& \mathrm{A} \longrightarrow \mathrm{~B} \\
& \mathrm{EI.} \mathrm{Op} . \\
& \mathrm{I} \longrightarrow \mathrm{E}
\end{aligned} \quad \Longrightarrow \quad \mathrm{~A}=\mathrm{EB}
$$

Problem

Let

$$
\mathrm{A}=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right] \quad \text { and } \quad \mathrm{C}=\left[\begin{array}{rr}
1 & 3 \\
2 & -5
\end{array}\right]
$$

Find elementary matrices E and F so that $\mathrm{C}=\mathrm{FEA}$.

Solution
Note. The statement of the problem implies that C can be obtained from A by a sequence of two elementary row operations, represented by elementary matrices E and F .

$$
A=\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right] \overrightarrow{\mathrm{E}}\left[\begin{array}{ll}
1 & 3 \\
4 & 1
\end{array}\right] \overrightarrow{\mathrm{F}}\left[\begin{array}{rr}
1 & 3 \\
2 & -5
\end{array}\right]=\mathrm{C}
$$

where $\mathrm{E}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\mathrm{F}=\left[\begin{array}{rr}1 & 0 \\ -2 & 1\end{array}\right]$.Thus we have the sequence $\mathrm{A} \rightarrow \mathrm{EA} \rightarrow \mathrm{F}(\mathrm{EA})=\mathrm{C}$, so $\mathrm{C}=\mathrm{FEA}$, i.e.,

$$
\left[\begin{array}{rr}
1 & 3 \\
2 & -5
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right] .
$$

Elementary Matrices

Inverses of elementary matrices

Smith Normal Form

Inverses of Elementary Matrices

Lemma

Every elementary matrix E is invertible, and E^{-1} is also an elementary matrix (of the same type). Moreover, E^{-1} corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type	Operation	Inverse Operation
I	Interchange rows p and q	Interchange rows p and q
II	Multiply row p by $\mathrm{k} \neq 0$	Multiply row p by $1 / \mathrm{k}$
III	Add k times row p to row $\mathrm{q} \neq \mathrm{p}$	Subtract k times row p from row q

Note that elementary matrices of type I are self-inverse.

Inverses of Elementary Matrices

Example

Without using the matrix inversion algorithm, find the inverse of the elementary matrix

$$
G=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Hint. What row operation can be applied to G to transform it to I_{4} ? The row operation $\mathrm{G} \rightarrow \mathrm{I}_{4}$ is to add three times row one to row three, and thus

$$
\mathrm{G}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Check by computing $\mathrm{G}^{-1} \mathrm{G}$.

Example (continued)
Similarly,

$$
\mathrm{E}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

and

$$
\mathrm{F}^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Suppose A is an $m \times n$ matrix and that B can be obtained from A by a sequence of k elementary row operations. Then there exist elementary matrices $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \mathrm{E}_{\mathrm{k}}$ such that

$$
\mathrm{B}=\mathrm{E}_{\mathrm{k}}\left(\mathrm{E}_{\mathrm{k}-1}\left(\cdots\left(\mathrm{E}_{2}\left(\mathrm{E}_{1} \mathrm{~A}\right)\right) \cdots\right)\right)
$$

Since matrix multiplication is associative, we have

$$
\mathrm{B}=\left(\mathrm{E}_{\mathrm{k}} \mathrm{E}_{\mathrm{k}-1} \cdots \mathrm{E}_{2} \mathrm{E}_{1}\right) \mathrm{A}
$$

or, more concisely, $\mathrm{B}=\mathrm{UA}$ where $\mathrm{U}=\mathrm{E}_{\mathrm{k}} \mathrm{E}_{\mathrm{k}-1} \cdots \mathrm{E}_{2} \mathrm{E}_{1}$.

To find U so that $\mathrm{B}=\mathrm{UA}$, we could find $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ and multiply these together (in the correct order), but there is an easier method for finding U.

Definition

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. We write

$$
\mathrm{A} \rightarrow \mathrm{~B}
$$

if B can be obtained from A by a sequence of elementary row operations. In this case, we call A and B are row-equivalent.

Theorem
Suppose A is an $\mathrm{m} \times \mathrm{n}$ matrix and that $\mathrm{A} \rightarrow \mathrm{B}$. Then

1. there exists an invertible $m \times m$ matrix U such that $B=U A$;
2. U can be computed by performing elementary row operations on $\left[\mathrm{A} \mid \mathrm{I}_{\mathrm{m}}\right]$ to transform it into $[\mathrm{B} \mid \mathrm{U}]$;
3. $\mathrm{U}=\mathrm{E}_{\mathrm{k}} \mathrm{E}_{\mathrm{k}-1} \cdots \mathrm{E}_{2} \mathrm{E}_{1}$, where $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ are elementary matrices corresponding, in order, to the elementary row operations used to obtain B from A.

Problem

Let $\mathrm{A}=\left[\begin{array}{rrr}3 & 0 & 1 \\ 2 & -1 & 0\end{array}\right]$, and let R be the reduced row-echelon form of A .
Find a matrix U so that $\mathrm{R}=\mathrm{UA}$.

Solution

$$
\begin{gathered}
{\left[\begin{array}{rrr|rr}
3 & 0 & 1 & 1 & 0 \\
2 & -1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rr}
1 & 1 & 1 & 1 & -1 \\
2 & -1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rr}
1 & 1 & 1 & 1 & -1 \\
0 & -3 & -2 & -2 & 3
\end{array}\right]} \\
\quad \rightarrow\left[\begin{array}{rrr|r|}
1 & 1 & 1 & 1 \\
0 & 1 & -1 \\
2 / 3 & 2 / 3 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rr}
1 & 0 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 & 2 / 3 & 2 / 3 & -1
\end{array}\right]
\end{gathered}
$$

Starting with $[\mathrm{A} \mid \mathrm{I}]$, we've obtained $[\mathrm{R} \mid \mathrm{U}]$.
Therefore $\mathrm{R}=\mathrm{UA}$, where

$$
\mathrm{U}=\left[\begin{array}{rr}
1 / 3 & 0 \\
2 / 3 & -1
\end{array}\right] .
$$

Example (A Matrix as a product of elementary matrices)
Let

$$
A=\left[\begin{array}{rrr}
1 & 2 & -4 \\
-3 & -6 & 13 \\
0 & -1 & 2
\end{array}\right]
$$

Suppose we do row operations to put A in reduced row-echelon form, and write down the corresponding elementary matrices.

$$
\begin{gathered}
{\left[\begin{array}{rrr}
1 & 2 & -4 \\
-3 & -6 & 13 \\
0 & -1 & 2
\end{array}\right] \underset{\mathrm{E}_{1}}{\longrightarrow}\left[\begin{array}{rrr}
1 & 2 & -4 \\
0 & 0 & 1 \\
0 & -1 & 2
\end{array}\right] \xrightarrow[\mathrm{E}_{2}]{\rightarrow}\left[\begin{array}{rrr}
1 & 2 & -4 \\
0 & -1 & 2 \\
0 & 0 & 1
\end{array}\right] \underset{\mathrm{E}_{3}}{\longrightarrow}} \\
{\left[\begin{array}{rrr}
1 & 2 & -4 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[\mathrm{E}_{4}]{\longrightarrow}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] \xrightarrow[\mathrm{E}_{5}]{\longrightarrow}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

Notice that the reduced row-echelon form of A equals I_{3}. Now find the matrices $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{4}$ and E_{5}.

Example (continued)

$$
\begin{gathered}
\mathrm{E}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathrm{E}_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \mathrm{E}_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathrm{E}_{4}=\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \mathrm{E}_{5}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

It follows that

$$
\begin{aligned}
\left(\mathrm{E}_{5}\left(\mathrm{E}_{4}\left(\mathrm{E}_{3}\left(\mathrm{E}_{2}\left(\mathrm{E}_{1} \mathrm{~A}\right)\right)\right)\right)\right) & =\mathrm{I} \\
\left(\mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}\right) \mathrm{A} & =\mathrm{I}
\end{aligned}
$$

and therefore

$$
\mathrm{A}^{-1}=\mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}
$$

Example (continued)
Since $\mathrm{A}^{-1}=\mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}$,

$$
\begin{aligned}
\mathrm{A}^{-1} & =\mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \\
\left(\mathrm{~A}^{-1}\right)^{-1} & =\left(\mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}\right)^{-1} \\
\mathrm{~A} & =\mathrm{E}_{1}^{-1} \mathrm{E}_{2}^{-1} \mathrm{E}_{3}^{-1} \mathrm{E}_{4}^{-1} \mathrm{E}_{5}^{-1}
\end{aligned}
$$

This example illustrates the following result.

Theorem
Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. Then, A^{-1} exists if and only if A can be written as the product of elementary matrices.

Example (revisited - Matrix inversion algorithm)

$$
\begin{aligned}
& {[\mathrm{A} \mid \mathrm{I}] }=\left[\begin{array}{rrr|r}
1 & 2 & -4 & \\
-3 & -6 & 13 & \mathrm{I} \\
0 & -1 & 2 &
\end{array}\right] \\
& \mathrm{E}_{1}[\mathrm{~A} \mid \mathrm{I}]=\left[\begin{array}{rrr|r}
1 & 2 & -4 & \mathrm{E}_{1} \\
0 & 0 & 1 & \mathrm{E}_{1} \\
0 & -1 & 2 &
\end{array}\right]=\left[\begin{array}{rrr|rrr}
1 & 2 & -4 & 1 & 0 & 0 \\
0 & 0 & 1 & 3 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \mathrm{E}_{2} \mathrm{E}_{1}[\mathrm{~A} \mid \mathrm{I}]=\left[\begin{array}{rrr|r}
1 & 2 & -4 & \mathrm{E}_{2} \mathrm{E}_{1} \\
0 & -1 & 2 & \\
0 & 0 & 1 &
\end{array}\right]=\left[\begin{array}{rrr|rrr}
1 & 2 & -4 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Example (continued)

$$
\begin{gathered}
\mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}[\mathrm{~A} \mid \mathrm{I}]=\left[\begin{array}{rrr|r}
1 & 2 & -4 & \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \\
0 & 1 & -2 \\
0 & 0 & 1 &
\end{array}\right]=\left[\begin{array}{rrr|rrr}
1 & 2 & -4 & 1 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & -1 \\
0 & 0 & 1 & 3 & 1 & 0
\end{array}\right] \\
\mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}[\mathrm{~A} \mid \mathrm{I}]=\left[\begin{array}{rrr|r}
1 & 0 & 0 & \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \\
0 & 1 & -2 \\
0 & 0 & 1 &
\end{array}\right]=\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 2 \\
0 & 1 & -2 & 0 & 0 & -1 \\
0 & 0 & 1 & 3 & 1 & 0
\end{array}\right] \\
\mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}[\mathrm{~A} \mid \mathrm{I}]=\left[\left.\begin{array}{rrr|r}
1 & 0 & 0 & \mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right\rvert\,=\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 2 \\
0 & 1 & 0 & 6 & 2 & -1 \\
0 & 0 & 1 & 3 & 1 & 0
\end{array}\right]\right. \\
\mathrm{A}^{-1}=\mathrm{E}_{5} \mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}=\left[\begin{array}{rrr}
1 & 0 & 2 \\
6 & 2 & -1 \\
3 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Problem

Express $\mathbf{A}=\left[\begin{array}{rr}4 & 1 \\ -3 & 2\end{array}\right]$ as a product of elementary matrices.

Solution

$$
\left[\begin{array}{rr}
4 & 1 \\
-3 & 2
\end{array}\right] \underset{\mathrm{E}_{1}}{\longrightarrow}\left[\begin{array}{rr}
1 & 3 \\
-3 & 2
\end{array}\right] \underset{\mathrm{E}_{2}}{\longrightarrow}\left[\begin{array}{rr}
1 & 3 \\
0 & 11
\end{array}\right] \underset{\mathrm{E}_{3}}{\longrightarrow}\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \underset{\mathrm{E}_{4}}{\longrightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

with

$$
\mathrm{E}_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \mathrm{E}_{2}=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right], \mathrm{E}_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{11}
\end{array}\right], \mathrm{E}_{4}=\left[\begin{array}{rr}
1 & -3 \\
0 & 1
\end{array}\right]
$$

Since $\mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1} \mathrm{~A}=\mathrm{I}, \mathrm{A}^{-1}=\mathrm{E}_{4} \mathrm{E}_{3} \mathrm{E}_{2} \mathrm{E}_{1}$, and hence

$$
\mathrm{A}=\mathrm{E}_{1}^{-1} \mathrm{E}_{2}^{-1} \mathrm{E}_{3}^{-1} \mathrm{E}_{4}^{-1}
$$

Solution (continued)
Therefore,

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]^{-1}\left[\begin{array}{rr}
1 & 0 \\
0 & 1 / 11
\end{array}\right]^{-1}\left[\begin{array}{rr}
1 & -3 \\
0 & 1
\end{array}\right]^{-1}
$$

i.e.,

$$
A=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-3 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & 11
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

One result that we have assumed in all our work involving reduced row-echelon matrices is the following.

Theorem (Uniqueness of the Reduced Echelon Form)
If A is $\mathrm{an} \mathrm{m} \times \mathrm{n}$ matrix and R and S are reduced row-echelon forms of A , then $\mathrm{R}=\mathrm{S}$.

Remark

This theorem ensures that the reduced row-echelon form of a matrix is unique, and its proof follows from the results about elementary matrices.

Elementary Matrices

Inverses of elementary matrices

Smith Normal Form

Smith Normal Form

Definition

If A is an $m \times n$ matrix of rank r, then the matrix $\left(\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right)_{m \times n}$ is called the Smith normal form of A.

Theorem
If A is an $\mathrm{m} \times \mathrm{n}$ matrix of rank r , then there exist invertible matrices U and V of size $m \times m$ and $n \times n$, respectively, such that

$$
\mathrm{UAV}=\left(\begin{array}{cc}
\mathrm{I}_{\mathrm{r}} & 0 \\
0 & 0
\end{array}\right)_{\mathrm{m} \times \mathrm{n}}
$$

Proof.

1. Apply the elementary row operations:

$$
\left[\mathrm{A} \mid \mathrm{I}_{\mathrm{m}}\right] \xrightarrow{\text { e.r.o. }}[\operatorname{rref}(\mathrm{A}) \mid \mathrm{U}]
$$

2. Apply the elementary column operations:

$$
\binom{\operatorname{rref}(\mathrm{A})}{\mathrm{I}_{\mathrm{n}}} \xrightarrow{\text { e.c.o. }}\binom{\left(\begin{array}{cc}
\mathrm{I}_{\mathrm{r}} & 0 \\
0 & 0
\end{array}\right)_{\mathrm{m} \times \mathrm{n}}}{\mathrm{~V}}_{2 \mathrm{~m} \times \mathrm{n}}
$$

Remark

The elementary column operations above are equivalent to the elementary row operations on the transpose:

$$
\left[\operatorname{rref}(A)^{T} \mid I_{n}\right] \xrightarrow{\text { e.r.o. }}\left[\left.\left(\begin{array}{cc}
\mathrm{I}_{\mathrm{r}} & 0 \\
0 & 0
\end{array}\right)_{\mathrm{n} \times \mathrm{m}} \right\rvert\, \mathrm{V}^{\mathrm{T}}\right]_{\mathrm{n} \times 2 \mathrm{~m}}
$$

Problem

Find the decomposition of $\mathrm{A}=\left[\begin{array}{rrr}3 & 0 & 1 \\ 2 & -1 & 0\end{array}\right]$ into the Smith normal form:
$A=\widetilde{U} N \widetilde{V}$, where N is the Smith normal form of A and $\widetilde{U}, \widetilde{V}$ are some invertible matrices.

Solution
We have seen that

$$
\left[\mathrm{A} \mid \mathrm{I}_{2}\right]=\left[\begin{array}{rrr|rr}
3 & 0 & 1 & 1 & 0 \\
2 & -1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|rr}
1 & 0 & 1 / 3 & 1 / 3 & 0 \\
0 & 1 & 2 / 3 & 2 / 3 & -1
\end{array}\right]=[\operatorname{rref}(\mathrm{A}) \mid \mathrm{U}]
$$

Now,

$$
\left(\operatorname{rref}(\mathrm{A})^{\mathrm{T}} \mid \mathrm{I}_{3}\right)=\left[\begin{array}{cc|ccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
\frac{1}{3} & \frac{2}{3} & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|ccc}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & -\frac{2}{3} & 1
\end{array}\right]=\left[\mathrm{N}^{\mathrm{T}} \mid \mathrm{V}^{\mathrm{T}}\right]
$$

Solution (Continued)
Hence, we find $\mathrm{N}=\mathrm{UAV}$, namely,

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 / 3 & 0 \\
2 / 3 & -1
\end{array}\right)\left[\begin{array}{ccc}
3 & 0 & 1 \\
2 & -1 & 0
\end{array}\right]\left(\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & -2 / 3 \\
0 & 0 & 1
\end{array}\right)
$$

Finally, since U and V are invertible, we see that

$$
\mathrm{A}=\mathrm{U}^{-1} \mathrm{NV}^{-1}
$$

namely,

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
3 & 0 & 1 \\
2 & -1 & 0
\end{array}\right] & =\left(\begin{array}{cc}
1 / 3 & 0 \\
2 / 3 & -1
\end{array}\right)^{-1}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & -2 / 3 \\
0 & 0 & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 / 3 \\
0 & 1 & 2 / 3 \\
0 & 0 & 1
\end{array}\right) \\
& =\widetilde{U} N \widetilde{V} .
\end{aligned}
$$

